16 APR 2018 by ideonexus

## Euclid's Elements as a Game

"If video games had been around in 350 BC, Euclid would have made a video game," Devlin told me. The thirteen books of Euclid's Elements would have been the supplemental material, a PDF file that you could read if you wanted to. "People think I'm joking—I absolutely mean that. Euclid would not have written a textbook, he would have designed a video game." Peek at any of his proofs, Devlin said, and you'll quickly find that the great Greek mathematician, often called the father of geometry, ...
Folksonomies: mathematics classics gaming
Folksonomies: mathematics classics gaming

24 JAN 2015 by ideonexus

## Superstring Theory

It is time now to try to describe what a superstring really is. Here I run into the same difficulty which the geometer Euclid encountered 2,200 years ago. Euclid was trying to convey to his readers his idea of a geometrical point. For this purpose he gave his famous definition of a point: "A point is that which has no parts, or which has no magnitude." This definition would not be very helpful to somebody who was ignorant of geometry and wanted to understand what a point was. Euclid's notion ...

18 JUN 2013 by ideonexus

## The Mathematical Image

The proof is elegant and the result profound. Still, it is typical mathematics; so, it’s a good example to reflect upon. In doing so, we will begin to see the elements of the mathematical image, the standard conception of what mathematics is. Let’s begin a list of some commonly accepted aspects. By ‘commonly accepted’ I mean that they would be accepted by most working mathematicians, by most educated people, and probably by most philosophers of mathematics, as well. In listing them as...
Folksonomies: mathematics philosophy
Folksonomies: mathematics philosophy

How mathematics provides certainty, objectivity,

26 MAR 2013 by ideonexus

## Mathematics Lies Outside Ourselves

I believe that mathematical reality lies outside us, that our function is to discover or observe it, and that the theorems which we prove, and which we describe grandiloquently as our "creations," are simply the notes of our observations. * * * Let us suppose that I am giving a lecture on some system of geometry, such as the ordinary Euclidean geometry, and that I draw figures on the blackboard to stimulate the imagination of my audience, rough drawings of straight lines or ...

When teaching mathematics, it does not matter how nice the drawings or the teaching space, the ideas are what's important and they are independent of the teaching method.