12 JAN 2018 by ideonexus

 Neurons Use Viruses to Share Information and Learn

When genes are activated, the instructions encoded within their DNA are first transcribed into a related molecule called RNA. Shepherd’s colleague Elissa Pastuzyn showed that the Arc shells can enclose RNA and move it from one neuron to another. And that’s basically what retroviruses do—they use protein shells to protect their own RNA as it moves between cells in a host. So our neurons use a repurposed viral gene to transmit genetic information between each other in an oddly virus-like...
Folksonomies: dna neurons virus microbiology
Folksonomies: dna neurons virus microbiology
  1  notes
19 NOV 2015 by ideonexus

 A Single Neuron Can Recognize Patterns

Neocortical neurons have thousands of excitatory synapses. It is a mystery how neurons integrate the input from so many synapses and what kind of large-scale network behavior this enables. It has been previously proposed that non-linear properties of dendrites enable neurons to recognize multiple patterns. In this paper we extend this idea by showing that a neuron with several thousand synapses arranged along active dendrites can learn to accurately and robustly recognize hundreds of unique p...
  1  notes
21 JUN 2013 by mxplx

 I am my connectome


We know that each of us is unique, but science has struggled to pinpoint where, precisely, our uniqueness resides. Is it in our genes? The structure of our brains? Our genome may determine our eye color and even aspects of our personality. But our friendships, failures, and passions also shape who we are. The question is: how? Sebastian Seung, a dynamic professor at MIT, is on a quest to discover the biological basis of identity. He believes it lies in the pattern of connections between the brain’s neurons, which change slowly over time as we learn and grow. The connectome, as it’s called, is where our genetic inheritance intersects with our life experience. It’s where nature meets nurture. Seung introduces us to the dedicated researchers who are mapping the brain’s connections, neuron by neuron, synapse by synapse. It is a monumental undertaking—the scientific equivalent of climbing Mount Everest—but if they succeed, it could reveal the basis of personality, intelligence, memory, and perhaps even mental disorders. Many scientists speculate that people with anorexia, autism, and schizophrenia are "wired differently," but nobody knows for sure. The brain’s wiring has never been clearly seen. In sparklingly clear prose, Seung reveals the amazing technological advances that will soon help us map connectomes. He also examines the evidence that these maps will someday allow humans to "upload" their minds into computers, achieving a kind of immortality. Connectome is a mind-bending adventure story, told with great passion and authority. It presents a daring scientific and technological vision for at last understanding what makes us who we are. Welcome to the future of neuroscience